domingo, 30 de janeiro de 2011

8394 - TALES DE MILETO

voltar

www.matematica.br


Tales de Mileto
Período: c. 625 - 546 a.C.
Assuntos matemáticos envolvidos:
Geometria: teorema de Tales; semelhança de triângulos; ângulos;circunferência; cálculo da altura da pirâmide;
Para alguns historiadores da matemática antiga, a geometria demonstrativa iniciou-se com Tales de Mileto, um dos sete sábios da Grécia. Foi o fundador da escola jônica, escola de pensamento dedicada à investigação da origem do universo e de outras questões filosóficas, entre elas a natureza e a validade das propriedades matemáticas dos números e das figuras. Tales é uma figura imprecisa historicamente, pois não sobreviveu nenhuma obra sua. O que sabemos é baseado em antigas referências gregas à história da matemática que atribuem à ele um bom número de descobertas matemáticas definidas. Pouco sabemos sobre a vida e obra de Tales. Supõe-se que começou sua vida como mercador, tornando-se rico o suficiente para dedicar a parte final de sua vida ao estudo e a realização de algumas viagens. Supõe-se que viveu algum tempo no Egito onde provavelmente aprendeu geometria e na Babilônia onde entrou em contato com tabelas e instrumentos astronômicos. Faz parte do seu mito o fato de ter previsto o eclipse solar de 585 a.C., embora muitos historiadores da ciência duvidem que os meios existentes na época permitissem tal proeza. Atribui-se a Tales o cálculo da altura das pirâmides, bem como o cálculo da distância até navios no mar, por triangulação. Tales foi o primeiro personagem conhecido a quem associam-se descobertas matemáticas. Acredita-se que obteve seus resultados mediante alguns raciocínios lógicos e não apenas por intuição ou experimentação. Os fatos geométricos cuja descoberta é atribuída a Tales são:
A demonstração de que os ângulos da base de dois triângulos isósceles são iguais;
A demonstração do seguinte teorema: se dois triângulos tem dois ângulos e um lado respectivamente iguais, então são iguais;
A demonstração de que todo diâmetro divide um círculo em duas partes iguais;
A demonstração de que ao unir-se qualquer ponto de uma circunferência aos extremos de um diâmetro AB obtém-se um triângulo retângulo em C. Provavelmente, para demonstrar este teorema, Tales usou também o fato de que a soma dos ângulos de um triângulo é igual a dois retos;
Tales chamou a atenção de seus conterrâneos para o fato de que se duas retas se cortam, então os ângulos opostos pelo vértice são iguais.


Alterado em: 19/09/2000
Texto de: Valéria Ostete Jannis Luchetta; supervisão e orientação: prof. Doutor Francisco César Polcino Milies
Bibliografia:
Polcino, César M. & Bussab, José Hugo O., A Geometria na Antigüidade Clássica, FTD, São Paulo, 1999.
Eves, Howard, Introdução à História da Matemática, Unicamp, Campinas, 1997.

Compilado em: 26 de Fevereiro de 2008

voltar





COPYRIGHT VALÉRIA OSTETE JANIIS LUCHETTA

Nenhum comentário:

Postar um comentário

Contador de visitas